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Abstract. We provide a simple proof of the completeness of arbitrary public announcement
logic APAL. The proof is an improvement over the proof found in [2].

1 Introduction

In [2] Arbitrary Public Announcement Logic (APAL) is presented. This is an
extension of the well-known public announcement logic ([7]) with quantification over
announcements. The logic is axiomatized, but the completeness proof may be consid-
ered rather complex. The completeness is shown by employing an infinitary axiom-
atization, that is then shown to be equivalent (it produces the same set of theorems)
to a finitary axiomatization. The completeness proof in [2] contained an error in the
Truth Lemma, involving a complexity measure. This error has been corrected in [1],
by expanding that complexity measure.'

Another source of confusion in [2], although there was no error involved, con-
cerned the employment of maximal consistent theories (instead of maximal consis-

tent sets, a more common term in modal logic), and a number of properties shown for
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Hoek, and Barteld Kooi. Special thanks go to Jie Fan for careful reading of the manuscript and correct-
ing an error in the definition of the do measure. We thank the reviewers of the journal for their insightful
comments and corrections. Hans van Ditmarsch is also affiliated to IMSc, Chennai, as research asso-
ciate. He acknowledges support from ERC project EPS 313360.

"The lemma is as follows: Let  be a formula in Lopqi. Then for all maximal consistent the-
ories x and for all finite sequences 1/_; = Y1,..., 0, of formulas in Lapar such that Y1 € =z, ...,
[1] ... (k-1 € x: MC|@Z7, x = @ iff [1]...[Yk]e € x. The proof is by induction on ¢. The
problem is that in expression M ¢ ]1/7, x = ¢, the restriction M* ]1/7 of the canonical model M cannot

be assumed to exist: although we have assumed that 1 € z, ..., and that [¢1] ... [¢r—1]tr € z, we
did not assume that M,z = 11, ..., and that M, x |= [1)1] . .. [tk—1]1k. The latter would be needed
to guarantee that existence. But the induction was only on ¢ and not on ¢, ..., and [¢)1] . .. [r—1]|1k

as well. By expanding the complexity measure used in the Truth Lemma to include the formulas in the
sequence 91, . .., [Y1] ... [k—1]Yk as well, the matter can be corrected.



maximal consistent theories. While repairing the completeness proof, and while also
considering additional properties of the canonical model, we found another complete-
ness proof, that the reader may consider more direct and more elegant than the one in
[2, 1]. This is presented in this work, including some further results for the canonical
model.

2 Syntax

Let Atm be a countable set of atoms (with typical members denoted p, g, etc.)
and Agt be a countable set of agents (with typical members denoted a, b, etc.).

Definition 1 (Language of APAL) The set L, of all formulas (with typical mem-
bers denoted ¢, 1, etc.) is inductively defined as follows, where p € Atm and
a € Agt:

pu=p| L@ | (V)| Kap| el | Oop.

We define the other Boolean constructs as usual. The formulas K,¢, (@) and
O are obtained as abbreviations: K, for =K, (@)1 for =[¢]—p and Oy for
—0O-¢. We adopt the standard rules for omission of the parentheses. Given a formula
, the set of all (strict) subformulas of ¢ is denoted by Sub(y) (an elementary induc-
tive definition is omitted). We write ¢ <"? 4 iff ¢ € Sub(v)). We will say that a
formula ¢ is O-free iff Sub(yp) U{¢} contains no formula of the form Ov). A formula
 is said to be []-free iff Sub(¢) U {¢} contains no formula of the form [¢)]x. We
will say that a formula ¢ is epistemic iff ¢ is both O-free and [-]-free. The set £,,q; is
the set of all O-free formulas. The set L,; is the set of all epistemic formulas.

Of crucial importance in the completeness proof is a proper complexity measure
on formulas. The one we need is based on a partial order <*%#¢ providing a weighted
count of the number of symbols, and on a partial order <4, counting the number of
stacked O operators in a formula.

Definition 2 (Size) The size ofa formula ¢, in symbols Size(yp), is the non-negative
integer inductively defined as follows:

« Size(p) = 1

« Size(l) =

« Size(—yp) = Szze(go) +1,

« Size(p V) = Size(p) + Size(y) + 1,
« Size(Kyp) = Size(p) + 1,

. Size([gp] ) = Size(p) + 3 - Size(y),

o Size(Qp) = Size(p) + 1.

The O-depth of a formula ¢, in symbols dn (), is the non-negative integer inductively
defined as follows:



* do(p) =0,

* dD(J—) =0,

* do(—~p) = do(e),

* do(p V¢) = max{da(p),da(¥)},
* do(Kap) = da(p),

* do([e]y) = do(e) + do(v),

* do(Op) =do(p) +1

We define the binary relations < Size <dg», and <§éze between formulas in the fol-
lowing way:

« o <57 ) iff Size(p) < Size(1)).

* ¢ <dy Y iffda(p) < do().

.« 0 <3Dize Y iff either do(p) < do(v), or do(p) = do(v) and Size(p) <
Size(1).

The next two lemmas combine a number of results on these binary relations.
Their proofs are obvious and have been omitted.

Lemma 1 Let ¢, be formulas.

« <5i%¢ js a well-founded strict partial order between formulas.
* <4, 1s a well-founded strict partial order between formulas.

. <§;Z€ is a well-founded strict partial order between formulas.
« If @ <U0 4)s then @ <5%%€ 9.

o If o <5U0 1 then @ <577 1.

* If ¢ is epistemic, then dn () = 0.

* If 4 is epistemic, then [¢)]¢ <§éze Oe.

Lemma 2 Let ¢, v, x be formulas and a € Agt.

1. =[]y <5 (],
2. Kalplp <5%¢ [p] Ko,
3. [Hle]-lx <= [o][¥]x.

The relation <“%*¢ has been tailored in order to ensure exactly the properties of
Lemma 2. Without the curious factor 3 in Size([p|y)) = Size(p)+3- Size()) these
properties would not hold. Given the previous lemmas, we can now list all the cases
later used in the Truth Lemma.



Corollary 1 In cases () and (xx), ¢ is epistemic.

o <G e e < e ¢ <Gz Q] Kay

po<iE oV le <P gL Kolely <3 [plKay

o <P eV le <GP gl Hlel-wlx <37 [ellvlx

p <3 Ky |lelv <37 lelw Xlelv <5 [x]Oy
(%) [l <32 Oy | lely <3 [¥l(¥VX)
[elx <57 [el(¥ V x)

Definition 3 (Necessity form) Now, let us consider a new atom denoted f. The set
NF of necessity forms (with typical members denoted £(f), £/ (%), etc.) is inductively
defined as follows—where ¢ is a formula:

§(8) =1 1w — &) [ Kal(H) | []€(2).

It is well worth noting that in each necessity form &, the new atom f has a unique
occurrence. The result of the replacement of { in its place in £ with a formula 1) is a
formula which will be denoted £(v)). It is inductively defined as follows:

- 1(¥) =1,

(= )W) = — &),
(Ka&)(p) = Kull(p),
([0l () = [w]€(¥).

3 Semantics

We introduce the structures and give a semantics for the logical language on these
structures. The material in this section (as also the logical language in the previous
section, and the axiomatization in the next section) is as in [2].

Definition 4 (Model) A model M = (W, R, V) consists of a nonempty domain
W, an accessibility function R : Agt — P(W x W) associating to each a € Agt
an equivalence relation R(a) on W, and a valuation function V : Atm — P(W),
where V' (p) denotes the valuation of atom p. For R(a), we write R,,.

Definition 5 (Semantics) Assume a model M = (W, R, V). We inductively define
the truth set || ¢ |M:

we | LM iff never

w e | p ™ iff w e V(p)

well-¢|M iff wdle|M

welevy M iff wel g™ orwe| M

w e || Kap ||[Miff forall v, Ry(w,v) implies v € || ¢ |M
we || [ely M iff well oM impliesw € || ¢ |M°

w e || Oy M iff for all epistemic ¢, w € || [¢]y [|M



where model M¥ = (W' R’ V") is such that

W= ell™
R, = Ran(lel™ x| el™),
V'ip) = VN e ™.

4 Axiomatization

An axiomatic system consists of a collection of axioms and a collection of infer-
ence rules. Let us consider the following axiomatic system:

Definition 6 (Axiomatization APAL)

(A0) all instantiations of propositional tautologies,
(A1) Kol = ¢) = (Kap — Kat)),
(A2) [¢](¥ = x) = ([e]¥ = [@lx),
(A3) O(p — ¥) — (Op — Oy),

(A4) Kaop — o,

(A5) Koo — KoKqp,

(A6) ¢ — K,K,o,

(A7) [¢lp < (¢ — D),

(A8) [p]L <> e,

(A9) [p]=¢ < (¢ = ~[p]¥),

(A10) [p](¥ vV x) < [l V [¢lx,

(A1) [p]Ko® > (¢ — Kalplt),

(A12) [o][¥]x ¢ [(p)¥]x,

(A13) if ¢ is epistemic, then Oy — [Y]p,
(RO) ({0 = ¥},9),

(R1) ({¢}, Kag),

(R2) ({o}: [¥]0),

(R3) ({#}, D),

(R4) ({&([¥)p): 4 is epistemic}, §(Ogp)).

Let APAL be the least subset of L, containing (A0)—(A13) and closed under
(RO)—(R4). An element of APAL is called a theorem.

Axiomatizations with infinitary rules such as (RR4) are less common than finitary
axiomatizations. We therefore elaborate somewhat on their differences.

In the ordinary setting of intermediate logics and modal logics, an inference rule
is an expression of the form

Qol(pla o 7pn)7 .. '7gpm(p17' .- 7pn)
,Lb(ph <. 7pn)




where ©1(p1, ...y Pn)s -+ ©m(P1, -, Pn) and Y (py, ..., py,) are formulas built up
from atoms py, . . ., p,. Such arule is ordinarily used by replacing these atoms by any

kind of formulas, that is to say: if the formulas 1 (X1, -, Xn)» - - > @m (X1, -« -5 Xn)
are derivable for some formulas x1, . . ., X, then the formula ¢(x1, ..., xy,) is deriv-
able too. See [8, Chapter 1] for details about inference rules in formal logic systems.
As a result, strictly speaking, our rule (R4) is not an inference rule, mainly because
it is an infinitary rule. There exists already many axiomatic systems in Theoretical
Computer Science and Artificial Intelligence that use infinitary rules: the infinitary
modal logic considered by Goldblatt [4, Chapter 9], the iteration-free propositional
dynamic logic with intersection axiomatized in [3], the first-order dynamic logic de-
veloped in [5, Chapter 3], the common knowledge logics considered in [6], etc. What
does it mean for a rule like our rule (R4) to be infinitary? Simply, the following:
before being allowed to use the rule (R4), for concluding that the formula &£(Oyp)
belongs to the set of all AP AL’s theorems, one has to make sure that all formulas of
the form £([¢)]¢) also belong to the set of all APAL’s theorems for each epistemic
formula 7). As the set of all epistemic formulas is infinite, the set of all APAL’s
theorems cannot be defined by considering the ordinary notion of a derivation as a
finite sequence of formulas where each member is either an instance of an axiom, or
obtained from previous members of the sequence by means of some inference rule. In
fact, in the setting of our axiomatic system, the set of all AP AL’s theorems is the least
set of formulas that contains axioms (A0)—(A13) and that is closed under inference
rules (R0)—(R4).

Finitary variants of (R4) have been also considered in [2, Section 4.3]. As
proved by Balbiani et al., all these variants define the same set of theorems as the
axiomatic system based on axioms (A0)—(A13) and inference rules (R0)—(R4). The
most convenient form for the completeness proof is the underlying axiomatization
with the infinitary rule (R4). We further note that the axioms (A3) and (A8), and
the rule (R3) in the axiomatization AP AL are derivable from the other axioms and
rules. Again, see [2] for details.

5 Canonical model
Definition 7 (Theory) A set x of formulas is called a theory iff it satisfies the fol-
lowing conditions:

* x contains APAL,
* z is closed under (R0) and (R4).

A theory z is said to be consistent iff 1 & x. A set x of formulas is maximal ift for
all formulas ¢, p € z or ~p € z.

Obviously, the smallest theory is AP AL whereas the largest theory is Lgpq1.



The only inconsistent theory is £,,,. The reader may easily verify that a theory x
is consistent iff for all formulas ¢, ¢ ¢ x or = ¢ x. Moreover, for all maximal
consistent theories x,

e 1 Zu,

s npexiffp ¢,

s (V) exiffpexory € .
Theories are closed under (R0) and (R4) but not under the derivation rules (R1),
(R2), and (R3) for a specific reason. Obviously, by definition, all derivation rules
preserve theorems. Semantically, we could say that they all preserve validities. Now,
unlike (R1), (R2), and (R3), the derivation rules (R0) and (R4) also preserve truths.
That is the reason! In the setting of our axiomatization based on the infinitary rule
(R4), we will say that a set = of formulas is consistent iff there exists a consistent
theory y such that z C y. Obviously, maximal consistent theories are maximal con-
sistent sets of formulas. Under the given definition of consistency for sets of formulas,
maximal consistent sets of formulas are also maximal consistent theories.

Definition 8 For all formulas ¢ and for all a € Agt, let

r+e = {29 euny,
Ko = {p: Kup €z},

[ple = {¢: el € x}.
The proofs of the following lemmas can be found in [2] (Lemmas 4.11 and 4.12).

Lemma 3 Let ¢ be a formula and a € Agt. For all theories x,

* x + @ is a theory containing = and ¢,
* [p]x is a theory,
* K,z is a theory.

Lemma 4 Let o be a formula. For all theories z, © + ¢ is consistent iff —p ¢ x.
Lemma 5 Each consistent theory can be extended to a maximal consistent theory.
The proof of the next lemma uses axioms (A4)—(A6).

Lemma 6 Leta € Agt. For all maximal consistent theories z, y, z,

* Kqx C x,
e if Kgx Cyand K,y C 2, then K,z C 2,
o if K,x C vy, then K,y C x.

Next lemma is usually called “Diamond Lemma”. Its proof is very classical and
uses Lemmas 3, 4 and 5.



Lemma 7 Let ¢ be a formula and a € Agt. For all theories z, if K,o ¢ x, then
there exists a maximal consistent theory y such that K,x C y and ¢ & y.

The next three lemmas were not found in [2].

Lemma 8 Let ¢ be a formula. For all maximal consistent theories x, if ¢ € x, then
[¢]z is a maximal consistent theory.

Proof Suppose ¢ € x. If [p|x is not consistent, then | € [p|x. Hence, [p] L €
x. Thus, ¢ € x. Since x is consistent, ¢ ¢ x: a contradiction. If [p]z is not
maximal, then there exists a formula ¢ such that ¢ & [p|x and =) & [p]z. Therefore,
[l € x and [p]—) € x. Since x is maximal, —[p|y € x and —[p| € .
Consequently, —([p]v V [p] 1)) € x. Hence, using (A10), =[p](1p V —1)) € . Since
x is consistent, [p|(¢ V =) € x. Since ¢ V —p € APAL, [¢|(vp vV —p) € APAL.
Thus, [¢](1) V =) € 2 a contradiction. O

Lemma 9 Let ¢, be formulas. For all maximal consistent theories x, (p)y € x
iff o € x and ¥ € [p]x.

Proof (=) Suppose (p)1) € x. Hence, (p)T € x. Thus, using (A8), ¢ € x. By
Lemma 8, [p]z is a maximal consistent theory. Suppose 1) & [p]z. Since [p]z is
maximal, =) € [p]z. Therefore, [p] 1) € x. Consequently, =(p)1) € z. Since x is
consistent, ()1 ¢ x: a contradiction.

(<) Suppose ¢ € z and ¢ € [p|]x. By Lemma 8, [p]z is a maximal consistent
theory. Suppose ()1) ¢ x. Since x is maximal, = ()Y € x. Hence, [p| ) € .
Thus, —1) € [p]z. Since [¢]x is consistent, 1 & [p]z: a contradiction. O

Lemma 10 Let ¢ be a formula and a € Agt. For all theories x, if ¢ € z, then
Kalplr = [¢p] Ko

Proof Suppose ¢ € x. For all formulas 1, the reader may easily verify that the
following conditions are equivalent:

Y € K[z,
K € [p]z,
[@]Kaib €z,
o — Kaulpl € m,
Kqlpl € ,
[90]77[) € Ky,
Y € [p] K.

NSk =

O

Definition 9 (Canonical model) The canonical model M¢ = (W€, R, V°) is de-
fined as follows:



* W€ is the set of all maximal consistent theories;
* R is the function assigning to each agent a the binary relation R, on W¢ de-
fined as
Ry iff Kgx C y;

V¢ is the function assigning to each atom p the subset V¢(p) of W€ defined as
x e Ve (p)iffp € .

It will be clear that the canonical model is a model according to Definition 4. By
Lemma 5, W€ is a non-empty set, and by Lemma 6 the binary relation R(a) is an
equivalence relation on W€ for each agent a.

6 Completeness

The main result of this Section is the proof of AP AL’s Truth Lemma (Lemma 12).
This proof is different from and simpler than the proof presented in [2].

Definition 10 Let  be a formula. Condition P(¢p) is defined as follows:
for all maximal consistent theories x, p € z iffx € || ¢ ||[M".
Condition H () is defined as follows:
for all formulas v, if <§éze o, then P(1)).

Our new proof of APAL’s Truth Lemma is done by using an <§;Ze-induction
on formulas. More precisely, we will demonstrate that

Lemma 11 For all formulas ¢, if H(y), then P(¢p).

Proof Suppose H(p). Let z be a maximal consistent theory. We consider the fol-
lowing 13 cases.

Case o = p. P(p) holds, as p € ziffx € || p ||™", by the definition of the canonical
model and the semantics of propositional atoms.

Case o = 1. P(L) holds,as | ¢ wand z ¢ | L ||™", by the definition of the
canonical model and the semantics of L.

Case ¢ = —). The reader may easily verify that the following conditions are equiva-
lent. The induction using < géze is used between step 2. and step 3. A similar inductive

argument is also used in all following cases:

l. —euxn,
2. Yp&u,
3w |l



4. x| - |M.
Hence, ¢ € ziffz € || - [|[M.

Case © = 1 V x. The reader may easily verify that the following conditions are
equivalent:

l. ¥Vyxeuz,

2. Y ex,ory€ux,

3. welly M orae| x M,
4. zeypvx M.

Hence, ¢ V x € ziffx € || ¢ Vv x |[M".

Case ¢ = Ky . The reader may easily verify that the following conditions are
equivalent. The implication from step 2. to step 1. is by Lemma 7.

1. K.Y €z,
2. for all maximal consistent theories y, if K,z C y, then ¢ € v,

3. for all maximal consistent theories y, if R%(a)y, then y € || ¢ |M°,
4. x| K [|M.

Hence, K1 € wiffz € || K. |M.

Case ¢ = [1)]p. The reader may easily verify that the following conditions are equiv-
alent. Between step 1. and step 2., use axiom (A7) [¢]p <+ (¥ — p), so that [¢]p € x
iff v — p € z (similar justifications apply in the other cases of form [¢)]x).

1. [¢]p €z,

2. Y &x,orp€ x,

3.z ||y M orae || p M,
4. ze| [Wp M.

Hence, [¢]p € z iffz € || []p |M°.

Case p = [¢)] L. The reader may easily verify that the following conditions are
equivalent:

1. [W]L € ux,
2. Y&,
3wl M,

4. ze| [ylL M
Hence, [¢] L € ziffz € || [¢]L |M°.

Case ¢ = [¢)]—x. The reader may easily verify that the following conditions are
equivalent. In the crucial equivalence between step 2. and 3. we use that —[¢)]x < gﬂize
[1)]=x, a consequence of Lemma 2 (the dn depth is the same for both formulas).

I [¢]=x €=,



2. Y &x or ]y €z,
3a M orw € || [y M
4. ze| lox M.

Hence, [¢]—x € ziffz € || [¢]-x |M°.

Case ¢ = [¢](x V 0). The reader may easily verify that the following conditions are
equivalent:

L [Yl(x Vo) eur,

2. [W]x €z, or[Y)0 € x,

3. we| Wix M, orz el [y
4. we| Wlx Vo) M.

Hence, [¢](x V ) € ziffz € || [](x V 0) ||M.

Case ¢ = [¢)]K,x. The reader may easily verify that the following conditions are
equivalent (again, a crucial step is between 2. and 3. where we can use induction on
K, []x because of Lemma 2):

2. Y &ux or Ky )y € x,
3. w ||y M orx e || Ka[ylx M,
z € || [Y]Kax M.

Hence, 1] K,y € ziffz € || ] Kqox |M°.

&

Case ¢ = [¢][x]f. The reader may easily verify that the following conditions are
equivalent (and once more, a crucial step is between 2. and 3. where we use Lemma
2):

L. [¢][x]0 € =,

2. [-[]-x]0 € z,

3. xell [H[y]-xo 1M,
4. x e Wi M

Hence, [][x]0 € x iffz € || [¢][x]0 |".

Case ¢ = [¢]0x. The reader may easily verify that the following conditions are
equivalent. Between 1. and 2., we use derivation rule (R4) on the necessity form
[¥][0]x (i-e., ([]8)([0]x)) and closure of maximal consistent sets under (R4). Be-
tween step 2. and step 3. we use the complexity measure <dséze, where we now
simply observe that [¢)]0y contains one O less than [¢)][f]x. Between step 3. and
step 4., we use the semantics of arbitrary announcements O and of announcements
[]: we note that == € || [1/][0]x ||[™" is by the semantics equivalent to: 2 € || 1 ||

implies z € || [0]y ||M)",

1. [¢]0x €z,



2. for all epistemic formulas 6, [)][0]y € =,
3. for all epistemic formulas 6, = € || [1][0]x ||,
4. e [Wox M.

Hence, [¢|0x € z iff 2 € || [¢]Ox ||M.

Case (o = 0. The reader may easily verify that the following conditions are equiv-
alent. The equivalence between step 2. and step 3. follows from the fact that for all
epistemic formulas , [x]y <§éze 0.

Oy € ,

for all epistemic formulas , [x]|¢ € =,

for all epistemic formulas x, = € || [x] ||,
4. x| Oy M.

Hence, Oy € ziffx € || Oy ||M°. O

whh =

Lemma 12 (Truth Lemma) Let ¢ be a formula. For all maximal consistent theories
€L,

pcaxiffzel|p|™M.
Proof By Lemma 11, using the well-foundedness of the strict partial order <§éze

between formulas. OJ

Now, we are ready to prove the completeness of APAL.
Proposition 1 For all formulas ¢, if ¢ is valid, then ¢p € APAL.

Proof Suppose ¢ is valid and ¢ ¢ APAL. By Lemmas 3, 4 and 5, there exists a
maximal consistent theory 2 containing —p. By Lemma 12, x € || = ||*°. Thus,
x & || ¢ |M°. Therefore, || ¢ ||M°# W€, Consequently, ¢ is not valid: a contradic-
tion. [

7 Conclusion

We have provided an alternative, simpler, completeness proof for the logic APAL.
The proof is considered simpler, because in the crucial Truth Lemma we do not need
to take finite sequences of announcements along. Instead, it can proceed by <§éze—
induction on formulas. We consider this result useful, as the completeness proofs of
various other logics employing arbitrary announcements or other forms of quantifiy-
ing over announcements may thus also be simplified, and as it may encourage the
developments of novel logics with quantification over announcements.
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