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Abstract

Background

Extensive efforts have been made in optimizing monoclonal IgG antibodies for use in
clinical practice. Accumulating evidence suggests that IgA or anti-FcaRI could also
represent an exciting avenue toward novel therapeutic strategies.

Summary

Here we underline that IgA is more effective in recruiting neutrophils for tumor cell
killing and is potently active against several pathogens, including rotavirus, poliovirus,
influenza virus and SARS-CoV-2. IgA could also be used to modulate excessive immune
responses in inflammatory diseases. Furthermore, secretory IgA is emerging as a major
regulator of gut microbiota, which impacts on intestinal homeostasis and global health
as well. As such, IgA could be used to promote a healthy microbiota in a therapeutic
setting.

Key messages

IgA combines multifaceted functions that can be desirable for immunotherapy.

Introduction

Immunoglobulin (Ig)A is by far the most abundant immunoglobulin class in humans.
Plasma cells produce around 3 to 5 grammes of IgA each day, much more than the
combined production of all other isotypes [1]. Compared to other Ig classes, IgA has
unique properties due to differences in its glycosylation patterns and molecular forms,
compared to other isotypes, as well as the presence of more than one receptor.

Interestingly, the human IgA system differs substantially from that of rodents. While two

IgA subclasses, IgA1 and IgA;, coexist in humans, murine and rat B cells produce only a



single class of IgA. IgA antibodies are secreted in the intestinal and respiratory tract and
are the main mediators of mucosal immunity. In human, they are monomeric in serum,
but are present as dimers, termed secretory IgA (slgA), at mucosal surfaces [2].
Moreover, the emerging field of mucosal immunology is shedding new light on IgA, and
in particular on its role in the maintenance of host/microbiota symbiosis. In the gut, IgA
is able to neutralize pathogens, as well as to establish and diversify commensal
microbiota [3-7]. Serum IgA plays a dual role, triggering either pro-inflammatory or
anti-inflammatory signaling pathways [8,9]. Here, we review recent murine and human

studies to evaluate the potential of [gA administration in immunotherapy.

Back to Basics

In humans, IgA exists as two closely related subclasses, IgA1 and IgA2, that differ by 13
additional amino acids in the hinge region of the IgA1 molecule [2]. While this difference
might explain the increased susceptibility of IgA1l to bacterial proteases [10], this
extended hinge region also confers to this subclass a T-shape that is beneficial for
distant antigen recognition [11]. Both IgA subclasses are highly N-glycosylated in their
CH1 and CH2 domains, with carbohydrates representing about 6% of their content. [gA1
harbours extra-0-linked glycans consisting of N-acetylgalacosamine with galactose and
sialic acids in the hinge region [12]. It is noteworthy that the glycan composition of the
IgA1 hinge region is heterogeneous, and that aberrant glycosylation is reportedly
involved in the pathogenesis of IgA nephropathy [13].

IgA is present in three different forms, the most common in human serum being a
monomer, whereas at mucosal sites, it is produced as polymeric molecules, foremost as
dimeric IgA. Dimeric IgA consists of two Ig molecules, linked tail-to-tail by a N-

glycosylated 16 kDa protein called joining (J)-chain (J-chain) [14]. The presence of the -



chain is a prerequisite for IgA transcytosis across epithelial cells and its secretion at
mucosal surfaces [15]. The polymeric Ig-receptor (pIgR), which is expressed on the
basolateral pole of epithelial cells, binds to the J-chain and releases IgA into the lumen as
sIgA. During this process, the pIgR ectodomain, referred to as the secretory component
(SC), remains covalently attached to IgA [16]. The heavily N-glycosylated SC stabilizes
IgA and prevents rapid proteolysis, thereby protecting the IgA against degradation in
the hostile environment of the digestive tract [17,18]. Secretory IgA is also present in
the mucous lining of the urogenital and respiratory tracts, as well as in saliva, milk and

tears [19].

IgA : an Ig with multiple partners

IgA interacts with various host receptors including pIgR [15,20], transferrin receptor
(TfR, CD71) [21], asialoglycoprotein-receptor [22], Dectin-1 [23], Fca/p receptors
[24,25], DC-SIGN [26,27], and FcaRI (CD89) [28]. These interactions are mediated
through the binding of glycans on the Fc part of the antibody or accessory molecules
such as the J-chain or the SC. Of note, IgA also binds to several bacterial proteins, the
main ones being IgA-binding M-like proteins of the serogroup A streptococci (Arp4 and
Sir22), the B-antigen of serogroup B streptococci and proteins of the superantigen-like
(SSL) family of S. aureus [29]. In the following sections, we briefly introduce DC-
SIGN/SIGNR1 and FcaRI since IgA interactions with these receptors may open novel

therapeutic opportunities in infectious and autoimmune diseases.

DC-SIGN
Dendritic Cell-Specific ICAM-3 Grabbing Nonintegrin (DC-SIGN), whose counterpart is

SIGNR1 in mice, belongs to the C-type lectin receptor family that is expressed at the



surface of dendritic cells (DCs). DC-SIGN interacts with IgA glycan, notably mannose
residues of the SC [26,27]. Secretory IgA binding to DC-SIGN/SIGNR1 induces
tolerogenic DCs, which fail to produce IL-12, but produce large amounts of IL-10. Such
sIgA induced-DCs promote the expansion of Foxp3+* regulatory T cells and prevent the
development of experimentally induced autoimmune diseases in animal models, such as

experimental autoimmune encephalomyelitis and type 1 diabetes [27,30].

FcaRI

Although FcaRI is a member of the Fc receptor Ig superfamily, it shares only 20%
sequence similarity with other Fc receptors such as FcyRs and FceRI. The FcaRI gene is
located on chromosome 19, within the leucocyte receptor cluster (LRC) that encodes
killer-inhibitory receptors (KIR) and leucocyte Ig-like receptors (LIR), while other Fc
receptors map on chromosome 1. FcaRI shows more sequence homology with KIR and
LIR than with other Fc receptors [28,31,32]. Of note, mice lack FcaRI that could explain
why we are still lacking a comprehensive picture of IgA function in vivo. In humans,
FcaRlI is expressed on cells of the myeloid lineage (neutrophils, monocytes, eosinophils,
and mostly macrophages), but not on mast cells or basophils [28,33-35]. FcaRI
expression has also been detected on human platelets [36]. FcaRI is still expressed in
IgA-deficient patients, which implies that FcaRI expression is constitutive and
independent of IgA. However, several mediators such as IL-8 [37], lipopolysaccharides
(LPS), tumor necrosis factor-a (TNF-a) [38] and granulocyte-macrophage colony-
stimulating factor (GM-CSF) [39], are able to modulate its expression level. Moreover,
both monomeric and polymeric IgA mediate FcaRI internalization resulting in

downregulation of its expression [40,41]. Altered FcaRI expression has been described



in various diseases including allergic disorders, arthritic diseases, such as ankylosing
spondylitis, and bacterial infections [34,42,43].

All forms of IgA bind to FcaRlI, albeit with different binding affinities. IgA-immune
complexes, and monomeric (mIgA) or dimeric IgA (dIgA), bind to FcaRI with
comparable association rates, whereas, compared to IgA-immune complexes, mIgA and
dIgA dissociation is faster, which results in low affinity (Kax10-6M) interactions for the
latter forms [44-46]. sIgA binding to FcaRI is partly hampered because of the presence
of the SC [47]. However, complement receptor 3 can act as a co-receptor to enable
increased sIgA binding [48-50]. It remains poorly described as of yet whether IgA1 and
IgA2 differently bind to FcaRI but it is noteworthy that altered glycosylation patterns of
either IgA or FcaRI modify the strength of IgA-FcaRI interactions. For instance, impaired
sialylation of FcaRI was reported to be associated to increased binding of IgA1 to FcaRI
in patients with IgA nephropathy [51,52].

Recently, it has been demonstrated that FcaRI-mediated signaling can initiate either
pro-inflammatory responses or inhibitory signals as a mechanism to dampen excessive
immune responses [8,53]. In this sequence of events, [gA-immune complexes first cross-
link FcaRI whose cytoplasmic tails are linked to the Fcy chains. Then, kinases from the
src family phosphorylate the tyrosines in the immunoreceptor tyrosine-based activation
motif (ITAM) of the Fcy chain, which, in turn, induce the recruitment of other tyrosine
kinases thereby facilitating the activation of various targets such as PI3K and
phospholipase C-y [54-56]. Together, these signaling pathways trigger a variety of
cellular processes, such as release of pro-inflammatory mediators, the induction of
antibody-dependent cellular cytotoxicity (ADCC), phagocytosis, antigen presentation or
the generation of respiratory bursts [57-60]. Functional responses following FcaRI

activation may also differ depending on cell type and is targeted. For instance, FcaRI



activation in neutrophils can lead to the formation of neutrophil extracellular traps
(NET) [61]. Alternatively, it has been shown that monomeric IgA, which does not cross-
link FcaRI, propagates inhibitory signals through the formation of “inhibisomes” that
contain signaling molecules [8,62]. Inhibisomes interfere in Fcy-chain signaling through
a process called inhibitory ITAM (ITAMi), leading to a downregulation of pro-
inflammatory cytokine release, chemotaxis, [gG-mediated phagocytosis, and oxidative
burst activity [37,63-66]. In line with these results, it has been proposed that IgA-
opsonized pathogens cross-link FcaRI, resulting in the generation of pro-inflammatory
responses, whereas, in contrast, circulating monomeric IgA antibodies induce inhibitory

signals that prevent excessive immune responses [67].

IgA therapy in infectious diseases

For years, sIlgA has been described as a first barrier against pathogens at mucosal
surfaces (Figure 2). sIgA can agglutinate bacteria, disturb bacterial motility, neutralize
bacterial toxins and also inhibit bacterial adherence to epithelium, thereby preventing
pathogen dissemination to the circulation [3-5,68,69]. These potent effects of IgA have
been assessed against multiple gastro-intestinal pathogens such as Salmonella
Typhimurium [5], Shigella flexnerii [4], Clostridiodes difficile [69], as well as against some
viruses. In particular, IgA exerts a neutralizing action on Sendai virus, Human
immunodeficiency virus and Influenza virus [70-74]. We have recently shown that IgA
is more effective than IgG at neutralizing SARS-Cov-2 [75]. Mallery and al. described an
alternative way for the neutralization of intracellular viruses through IgA binding to
tripartite motif-containing 21 (TRIM 21), which is expressed in various tissue types and
not just immune cells. After binding, TRIM 21 targets the virus-IgA complex for

proteosomal degradation in a process antibody-dependent intracellular neutralization



[76-78]. IgA also mediates protection against microbial infection via its interaction with
the FcaRI. It has been demonstrated that-infusion of antigen-specific IgA in human FcaRI
transgenic mice, but not wild type mice, results in an enhanced clearance of
Mycobacterium tuberculosis or Bordetella pertussis [79,80]. Based on these observations,
passive transfer of specific IgA and active immunisation may be effective strategies to
fight viral and bacterial infections.

The Rotavirus vaccine is viewed as a model system for understanding the therapeutic
potential of intestinal IgA in gastrointestinal viral infections. Before and during the
development of this vaccine, several correlative studies demonstrated that rotavirus-
specific IgA is one of the major effector molecules that confers long-term immunity in
humans, as well as in animal models [81-85]. The two current oral vaccines Rotarix®
(GlaxoSmithKline Biologicals) and RotaTeq® (Merck) were licensed for use in 2006.
Although of different composition, their effectiveness is similar in the prevention of
severe rotavirus gastroenteritis [86,87]. Seroconversion rates for serum anti-rotavirus
IgA are around 95% after the administration of two doses of the vaccine and duration of
protection and vaccine efficacy may be predicted by serum IgA titers [88]. Importantly,
higher child mortality has been associated with lower levels of vaccine-induced IgA [89].
Vaccine-induced IgA has played a major role in the worldwide eradication of poliovirus.
Both the inactivated polio vaccine, used in developed world, and live, attenuated, oral
poliovirus vaccine, mostly used in low- and middle-income countries, induce strong
specific IgA responses that neutralize the three distinct serotypes [90-92]. However,
mucosal IgA titers induced by the two vaccines greatly differ. The inactivated polio
vaccine, which is delivered by intramuscular injection, fails to trigger intestinal IgA
responses and is therefore less efficient [93]. This discrepancy points out the difficulties

to ensure the generation of mucosal IgA antibodies and furthermore underscores the



need to develop adequate vaccine adjuvants and delivery systems. Current injectable
vaccines use alum as adjuvant, which is not effective to trigger class-switching toward
the production of IgA [94]. In the last ten years, major efforts have been undertaken to
develop new mucosal adjuvants such as TLR agonists [95,96], and toxin derivatives
(ADP-ribosyl transferase enterotoxins, adenylate cyclase toxins) [97,98]. These efforts
stem from earlier studies that established key principles for the mucosal adjuvants
mode of action, such as cholera toxin [99,100]. sIgA itself might deliver an antigen to the
mucosal tissue and elicit a strong humoral response. Recently, it has been shown that
administration of p24gag (from HIV)-sIgA complexes in the nasal cavity elicits both
humoral and cellular immune responses, which confer protection against HIV intranasal
challenge [101].

Administration via the nasal route has been extensively examined as an
alternative strategy to induce sIgA that may protect against respiratory infections. These
studies came to fruition when the Food and Drug Administration (FDA) approved the
cold-adapted, live attenuated influenza vaccine in 2002, a vaccine that ensures stronger
protection than the parenteral inactivated vaccines [102-104]. Vaccination via the nasal
mucosa induces polymeric sIgA that showed greater ability to neutralize virus than
monomers. In addition, elevated sIgA serum levels correlated with vaccine efficacy
[105-108]. Intranasal vaccination offers many practical benefits such as needle-free
delivery and easy self-administration [109]. However, using the nasal route to mimic
the natural infection with the aim to induce mucosal immunity requires novel
approaches to evaluate the quality and quantity of IgA response, which, at present
however, are not correctly implemented. For instance, the approval of novel influenza
vaccines is still based on the results of hemagglutination inhibition tests, which only

measure IgG in serum [107].



Although we and others pointed out beneficial effects of vaccine-induced IgA responses
[110,111], several studies revealed a potential drawback of this approach. In the RV144
trial, which tested the efficacy of a vaccine against HIV, Haynes et al. showed that high
levels of serum specific IgA likely mitigated the protective effect of the vaccine [112]. In
a secondary analysis, they demonstrated that antigen-specific serum IgA antibodies
partially interfere with the binding of vaccine-induced IgG to HIV-1, thereby inhibiting
ADCC [113]. Recently, these results have been reproduced with human samples in vitro,
as well as in vivo in a macaque vaccine trial [114,115]. Future research is needed to
define to which extent different forms of IgA may differentially affect vaccine efficacy. It
is for instance presently unclear as to which kind of humoral response would optimally
protect against COVID-19, and whether anti-SARS-Cov-2 vaccine regimens should

consider boosting the IgA response.

IgA replacement therapy

Patients with primary antibody deficiency (PAD) have decreased immunoglobulin levels,
which makes them more susceptible to infections [116]. The use of IgG replacement
therapy successfully reduces the frequency of severe bacterial infections. However, non-
respiratory and upper respiratory tract infections persist, especially in patients with low
IgA and IgM levels [117-119]. Hence, it could be suggested to treat IgA/IgM-deficient
patients with IgA- and/or IgM replacement therapy. While most of the currently used Ig
preparations contain only IgG, a limited number of IgA-enriched preparations are
commercially available, such as fresh frozen plasma (FFP), Pentaglobin®, and
Trimodulin [120]. Next, we will discuss the efficacy of these preparations in preventing

infections.
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Although the protective role of IgA in infections has been extensively reported in the
literature, few studies have addressed the efficacy of IgA replacement in clinical practice
[120,121]. The first case reports of two patients with relapsing Campylobacter jejuni
infection demonstrated that repeated infusions of FFP led to detectable serum IgA levels
and a complete recovery from infection [122]. These findings were corroborated by a
study reporting the successful treatment of recurrent C. jejuni infections in PAD patients
using-Pentaglobin®, which is an IgA- and IgM-containing Ig preparation [123]. Finally,
treatment with Trimodulin (BT-588), which contains twice the quantity of IgA, as
compared to Pentaglobin®, tended to limit secondary infections in patients with severe
community-acquired pneumonia [124]. Of note, there are no reports on the treatment of
selective IgA-deficient patients (IgAd), which is the most common PAD, with a
prevalence reaching 1:600 in the Western hemisphere [125]. This is likely to be due to
reactions to Ig products and the emergence of anti-IgA antibodies that may preclude
substitutive IgA therapy in patients with selective IgAd. Anaphylactic reactions to IgG
infusions -that previously contained a small amount of IgA- have indeed been attributed
to the appearance of anti-IgA antibodies in patients lacking IgA [121]. However, a
detailed review of the literature reporting reactions in IgAd patients treated with
gammaglobulins identified only 27 patients that developed life-threatening reactions,
whereas around 50 patients exhibited detectable anti-IgA antibodies without any
symptoms [121]. These results question the relevance of anti-IgA antibodies and rather
suggest that [gAd patients might tolerate the presence of heterologous IgA. Large studies
are required to assess the safety and the therapeutic effects of IgA-enriched products in
preventing infections in general, and in IgAd in particular. Furthermore, IgA
preparations need to be improved in order to mimic the various forms of IgA that are

active at the mucosal surfaces (Figure 1). Plasma-derived IgA, which is mainly
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monomeric IgA1 might not have the same protective effect as dimeric IgA2 to limit

respiratory and intestinal infections.

IgA in anti-tumor therapy

Therapeutic antibodies used in the treatment of various cancers eliminate tumor cells
by a combination of both direct and indirect effects, which include complement-
dependent cytotoxicity (CDC), antibody-dependent cellular phagocytosis (ADCP) and
(ADCC) [126]. While IgG antibodies dominate the therapeutic field, it should be noted
that IgA monoclonal antibodies are also effective in killing tumor cells through the
activity of FcaRI-expressing macrophages and neutrophils (Figure 1). In this respect,
results from in vitro experiments have shown that IgA is superior in triggering ADCC by
neutrophils, as compared to IgG [127-130]. Experimental in vivo models have been
greatly improved with the generation of FcaRI transgenic mice [131,132], permitting to
demonstrate the potent anti-tumor activity of anti-EGFR IgA2 antibodies in various solid
tumor models [127]. In a mouse lymphoma model, anti-CD20 IgA2 elicited powerful
anti-tumor effects, subsequent to the recruitment of and recruited neutrophils to the
tumor site [129,133].

Unfortunately, IgA class antibodies have a short half-life, likely related by their
resistance to the process of recycling [134,135] and also their asialoglycoprotein-
receptor-mediated liver clearance via terminal galactose interaction [22], so far hinders
their use as therapeutic antibodies. Recent glyco-engineering strategies significantly
improved the pharmacokinetic properties of recombinant IgA (Figure 2). For instance,
IgA molecules with increased sialylation and deletion of terminal galactose residues on
glycan exhibited longer serum half-life, as compared to wild type IgA, offering a

promising format for immunotherapy [136,137]. Meyer et al. developed another

12



strategy to increase IgA half-life via its fusion to an albumin-binding domain [138]. This
small protein subunit, expressed in various gram-positive bacteria, allows the binding of
the fused-protein to albumin, then to the FcRn. In humans, recycling of albumin and IgG1
through FcRn extends their serum half-life to 19 and 21 days, respectively [134,139].
Besides pharmacokinetics, combinations of IgA and CD47-SIRPa-blocking agents have
provided evidence [140] that targeting phagocytosis checkpoint inhibitors enhanced IgA

function, as already demonstrated for IgG antibodies [141].

IgA therapy in inflammatory diseases

IgA binding to the FcaRI propagates inhibitory signals that result in anti-inflammatory
responses. Thus, FcaRI targeting could represent a promising strategy for the treatment
of various inflammatory diseases [142]. Indeed, administration of monomeric IgA to
FcaRI transgenic mice was found to result in the prevention and resolution of
experimentally induced arthritis. Similarly, in patients with rheumatoid arthritis,
monomeric IgA is able to inhibit pro-inflammatory cytokine production by and
chemotaxis of myeloid cells in vitro [9]. Alternatively, anti-FcaRI Fab fragments can
drive ITAMi-induced inhibitory signaling and have proven their therapeutic potential in
models of kidney inflammation [143,144]. Pasquier et al. also demonstrated that
pretreatment of FcaRI transgenic mice with anti-FcaRI drastically reduced the
development of bronchial inflammation [8]. Taken together, these findings suggest that
FcaRI targeting could represent a new and promising tool in preventing or treating

inflammatory diseases (Figure 1).
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Outlook

Research and development efforts provided meaningful improvements in IgA half-life
[136,137] and IgA production, underlining the feasibility of commercial scale IgA
production [136,145]. Since IgA is the predominant antibody fighting pathogens at the
mucosal surfaces, recent studies also developed exciting tools for orally deliverable IgA.
Entire sIgA or chimeric IgA have been already introduced in food or produced in plants
fit for human consumption. Strikingly, these formulations are able to neutralize bacterial
toxins in vitro or prevent gastro-intestinal infections in animals [146-148]. Since costs
hurdles might impede mAb IgA drug commercialization, future work should focus on
simple and low-cost manufacturing processes. Finally, in order to capitalize on the
advantages of IgA and IgG isotypes, the engineering of either cross-isotype molecules
[149], or bispecific antibodies [150,151] might be considered for therapeutic

applications.
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Figure 1: Therapeutic potential of IgA.
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Figure 2 : Improving IgA therapeutic potential through engineering

IgA has a shorter half-life than IgG since it cannot bind to the FcRn. To facilitate binding
to the latter, modified IgA with higher terminal sialylation of N-glycans [136] (blue
round arrow), albumin-binding domain [138] or IgG Fc domains [145,149] have been
generated. Removing of N-linked glycosylation sites (N166G and N337T) decrease IgA
clearance by the asialoglycoprotein receptor and thereby increase serum half-life [137].
Valine introduction at position 458 improve IgA polymerisation [145], and as a result
extends half-life and improves neutralizing capacities [145,152]. Heavy chain domains
are depicted in orange while light chains are shown in dark blue. Black circles represent
N-glycosylation sites. Orange lines indicate hinge regions and tailpieces. For clarity, [gA1

is omitted, only IgA2 is drawn.
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